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Summary

There are numerous applications at microwave and

optical frequencies for frequency selective surfaces,

e.g. , perforated screens which can either be free–

standing or printed on dielectric substrates (see
Figure 1). At optical frequencies, these surfaces
can be used aa mirrors [1-2] for solar power applica-
tions, where it is desired to selectively filter out

the UV or IR radiation, while retaining the visible
range of the spectrum. These surfaces alao find
important application at far–infrared [3-4] where

they can be used for enhancing the spectral purity of

a laser. Other applications at far-infrared include

filtering and beam-splitting, as described in a

review article by Uhlrich [5]. At microwave frequen-

cies, frequency selective surfaces are employed in
radomes [6] and satellite antennas [7-8].

In the process of designing systems which have

certain specified frequency characteristics, it

becomes necessary to develop a capability for analyzing
these surfaces accurately and efficiently for a wide
range of parameters and arbitrary angles of incidence.

The purpose of this work is to present a new
technique for solving the problem of scattering from

periodic screens. The new technique is not only
accurate, but extremely efficient as well. In addition,

it haa several unique features not found in conven-
tional approached, e.g., the moment method: (i) it
does not require the time-consuming steps of genera-

ting a matrix equation and ita inversion; (ii) it is
capable of handling 2110r more unknowns (conventional

approaches are limited to 28 unknowns unless an
exorbitant price is paid for computer cost and storage)

(iii) the CPU time on the computer is only on the order
of a few seconds even with 211 unknowns; (iv) an
accurate solution can be generated for large cell

sizes; (v) the solution procedure has a built-in
boundary condition check. Hence, the reliability of the
solution is assured.

The solution is constructed using the spectral or

transform domain approach which waa introduced recently

[9] for solving a class of open region problems, but is
found to be equally well-suited for solving periodic

grating problems of the type being considered here.
A brief summary of the method is now given.

The first step is to formulate an integral equa-
tion for the two components of the unknown currents
on the conducting patch (or the unknown fields in the
aperture), employing the usual field–matching procedure

applied tO the varioua subregions. For the two-
dimenaional grating problem, the equation takes the
form

/b f(x’)K(x,x’) dxl=g(x) ,

0

K(x, x’)

where f(x’)
field

= I rn $n(x)$n(x’)

ia proportional to

()<x<b (1)

the aperture electric

O < x < b is the extent of the aperture with the

zeroth cell

g(x) is know from the incident field

on(x) = exp(zjnn x/a)

Yn = Floquet wave number in the z-direction

a = cell dimension

Because of the particular nature of the kernel, the

above equation would be exactly invertible if the upper

ranges of x and x’ were equal to the cell dimension {a.
We can achieve this by introducing an additional

unknown h(x). We rewrite (1) as

ref(x’)K(x,x’)dx’= “9g(x) + eh(x) , O~x~a (2)

o

where

6 = truncation operator

{

1 , O<x<b
.

0 ,b<x<a

and 6 is the complementary operator. Note that the new

function h is as yet unknown.

This paper describes the use of the FFT algorithm

for rapidly solving (2) using a combination of
variation-iteration procedures. As mentioned earlisr,

the method has a built-in accuracy check, which is
baaed on the satisfaction of the boundary condition
and hence is extremely reliable.

To illustrate the application of the method, we

have studied a number of representative problems with

one-dimensional and two–dimensional gratinga.

As a first test, we have applied the spectral
domain method to the problem of an iris discontinuity

in a parallel–plate waveguide (see Figure 2). It is

well-known that, for certain angles of incidence, the
problem of a one-dimensional grating in free space

becomes equivalent to that of the iris problem in a
waveguid e. The E–field distribution in the aperture of

the plane of the discontinuity is plotted in Figure 2
for two different frequencies. Note that the bOundary
condition on the conducting iris is satisfied extremely

well even though the discontinuity under consideration

ia by no meana a “small geometrical perturbation” in

the guide.

Figure 3 shows a one-dimenaional grating structure
in tree space, illuminated by a normally incident plane
wave. The field on the grating plane has been computed

for two different incident fields, viz., the electric
polarizations of the incident field perpendicular and
parallel to the edge of the atrips. The results are

given in Figure 3. Note that the edge behavior of the

aperture electric field is significantly different for
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the two cases and that the solution appears to
follow the predicted edge–behavior for the two polar-

izations very well. The power-transmission and

reflection coefficients for the grating, which have

been computed as functions of number of iterationa,

are shown in Figure 4. Rapid convergence of the

iteration procedure is evident from these plots.

Finally, in Figure 5, we present the results for
a two-dimensional grating illuminated by a normally

incident plane wave. The aperture area is approxi-

mately 10k2 whereas the cell area is about 4412. The

dominant component of the E–field on the screen
surface is shown with the incident electric field

polarized in the y–direction. Even for the large cell

and aperture sizes under consideration here, no

difficulty is experienced in generating an accurate

field solution. In all of these computations, we

have chosen a 32 term Floquet expansion for the
unknown field along each of the two dimensions in a

unit cell. For the two-dimensional grating problem,

this leads to 211 equivalent unknowns to be solved.

We have found that a large number of unknowns are

easily handled by the method and that the computation

time required to derive the solution is very moderate
(5-6 sec. of CPU time). Finally, the accuracy of

the solution can be ascertained on the basis of the

satisfaction of the boundary condition by using the
spectral domain approach.
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E-field distribution sampled along the y–axis of

a plane grating illuminated by a normally incident
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(b) perpendicular to the edge of the strips.
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Distribution of the dominant component of E-field

‘in the plane of a perforated screen with rectangular

apertures. (a) E -field sampled along the x-axis;

(b) Ey=field samp~ed along the y-axis.

Power transmission and reflection coefficient

computed as a function of the number of iterations

for a grating illuminated by a normally incident

wave. Electric polarization (a) parallel;

(b) perpendicular to the edge of the strips.
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