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Summary

There are numerous applications at microwave and
optical frequencies for frequency selective surfaces,
e.g., perforated screens which can either be free-
standing or printed on dielectric substrates (see
Figure 1). At optical frequencies, these surfaces
can be used as mirrors [1-2] for solar power applica~
tions, where it is desired to selectively filter out
the UV or IR radiation, while retaining the visible
range of the spectrum. These surfaces also find
important applications at far-infrared [3-4] where
they can be used for enmhancing the spectral purity of
a laser. Other applications at far-infrared include
filtering and beam-splitting, as described in a
review article by Uhlrich [5]. At microwave frequen-
cies, frequency selective surfaces are employed in
radomes [6] and satellite antennas [7-8].

In the process of designing systems which have
certain specified frequency characteristics, it
becomes necessary to develop a capability for analyzing
these surfaces accurately and efficiently for a wide
range of parameters and arbitrary angles of incidence.

The purpose of this work is to present a new
technique for solving the problem of scattering from
periodic screens. The new technique is not only
accurate, but extremely efficient as well. 1In addition,
it has several unique features not found in conven-
tional approaches, e.g., the moment method: (i) it
does not require the time-consuming steps of genera-
ting a matrix equation and its inversion; (ii) it is
capable of handling 2!lor more unknowns (conventional
approaches are limited to 28 unknowns unless an
exorbitant price is paid for computer cost and storage)
(iii) the CPU time on the computer is only on the order
of a few seconds even with 2!l unknowns; (iv) an
accurate solution can be generated for large cell
sizes; (v) the solution procedure has a built-in
boundary condition check. Hence, the reliability of the
solution is assured.

The solution is constructed using the spectral or
transform domain approach which was introduced recently
[9] for solving a class of open region problems, but is
found to be equally well-suited for solving periodic
grating problems of the type being considered here.

A brief summary of the method is now given.

The first step is to formulate an integral equa-
tion for the two components of the unknown currents
on the conducting patch (or the unknown fields in the
aperture), employing the usual field-matching procedure
applied to the various subregions. For the two-
dimensional grating problem, the equation takes the
form

b
IO £(x') R(x,x") dx' = g(x) , 0<x <b 1)

KG,x') = [ ¢ (e (x")

where f£(x') is proportional to the aperture electric
field

0 < x < b is the extent of the aperture with the
zeroth cell

g(x) is known from the incident field

9, (x) = exp(2jnm x/a)

Yy = Floquet wave number in the z-direction
a = cell dimension

Because of the particular nature of the kermel, the
above equation would be exactly invertible if the upper
ranges of x and x' were equal to the cell dimension a.
We can achieve this by introducing an additional
unknown h(x). We rewrite (1) as

a ~
[ 6E(x") K(x,2") dx' = 8g(x) + 6h(x) , O<x<a (2)
0
where
6 = truncation operator
{1 , 0<x<b
0 , b<x<a

and 6 is the complementary operator. Note that the new
function h is as yet unknown.

This paper describes the use of the FFT algorithm
for rapidly solving (2) using a combination of
variation-iteration procedures. As mentioned earlier,
the method has a built-in accuracy check, which is
based on the satisfaction of the boundary condition
and hence is extremely reliable.

To illustrate the application of the method, we
have studied a number of representative problems with
one-dimensional and two-dimensional gratings.

As a first test, we have applied the spectral
domain method to the problem of an iris discontinuity
in a parallel-plate waveguide (see Figure 2). It is
well-known that, for certain angles of incidence, the
problem of a one-dimensional grating in free space
becomes equivalent to that of the iris problem in a
waveguide. The E-field distribution in the aperture of
the plane of the discontinuity is plotted in Figure 2
for two different frequencies. Note that the boundary
condition on the conducting iris is satisfied extremely
well even though the discontinuity under consideration
is by no means a "small geometrical perturbation" in
the guide.

Figure 3 shows a one-dimensional grating structure
in free space, illuminated by a normally incident plane
wave. The field on the grating plane has been computed
for two different incident fields, viz., the electric
polarizations of the incident field perpendicular and
parallel to the edge of the strips. The results are
given in Figure 3, Note that the edge behavior of the
aperture electric field is significantly different for
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the two cases and that the solution appears to

follow the predicted edge-behavior for the two polar-
izations very well. The power-transmission and
reflectign coefficients for the grating, which have
been computed as functions of number of iteratioms,
are shown in Figure 4. Rapid convergence of the
iteration procedure is evident from these plots.

Finally, in Figure 5, we present the results for
a two-dimensional grating illuminated by a normally
incident plane wave. The aperture area is approxi-
mately 10A2 whereas the cell area is about 4432, The
dominant component of the E-field on the screen
surface is shown with the incident electric field
polarized in the y-direction. Even for the large cell
and aperture sizes under consideration here, no
difficulty is experienced in generating an accurate
field solution. In all of these computations, we
have chosen a 32 term Floquet expansion for the
unknown field along each of the two dimensions in a
unit cell. TFor the two-dimensional grating problem,
this leads to 2!l equivalent unknowns to be solved.
We have found that a large number of unknowns are
easily handled by the method and that the computation
time required to derive the solution is very moderate
(5-6 secs of CPU time). Finally, the accuracy of
the solution can be ascertained on the basis of the
satisfaction of the boundary condition by using the
spectral domain approach.
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Figure 1. Prequency Selective Surface.
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Figure 2.

Amplitude IE ’ and phase L(E ) of the E-field
sampled along the x-axis in the plane of an

iris discontinuity in a parallel-plate waveguide
illuminated by a TE, mode incident wave of
wavelength (a) A = 6.7a; (b) A = 1.5a.
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E-field distribution sampled along the y-axis of
a plane grating illuminated by a normally incident
plane wave. Electric polarization (a) parallel;
(b) perpendicular to the edge of the strips.
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Figure 4.

Power transmission and reflection coefficient
computed as a function of the number of iterations
for a grating illuminated by a normally incident
wave. Electric polarization (a) parallel;

(b) perpendicular to the edge of the strips.
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Distribution of the dominant component of E-field

in the plane of a perforated screen with rectangular
apertures. (a) E -field sampled along the x-axis;
(b) Ey=fie1d sameed along the y-axis.
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